#### A New Technology for Harvesting Wind and Water Energy



W2 Energy Development Corporation

Patent granted 12/15/2009

#### The Corporate Goal : Creating a Balanced Technological System

#### 100% Efficiency is the Objective



The Basic Concept for Utilizing the Kinetic Energy in Wind and Water First: Create a System in Balance With

Equal Weight on Each Side of a Fulcrum



#### Then:

#### Reconfigure the Balanced Beam with Devices that have a High Potential for Harvesting Wind Energy

Counterbalancing Weight —

Symmetrical Wings as Harvesting Devices

Substitute Differently Configured Weights on each side of the fulcrum and the System remains in balance

# Thereby a Wind Harvesting Process is Created

A positive Angle of attack on a wing creates a positive lift A negative angle of attack creates a negative lift

Mechanical advantage of 10:1

Useful Force

System balance changed by the wind force interacting with the wing

Wind Energy

W2 Energy Development Corporation

0

Patent granted 12/15/2009



#### Then: Consider the Efficiency of the Propeller Driven Turbine for Harvesting Wind Energy

<u>When</u> the radius of the propeller rotating in the swept area is 90 feet – the swept area through which it passes is 25,500 sq. ft.

# Assuming the dimensions of each of the 3 propeller blades to be 88 ft long x 5 ft wide then there will be a total surface area of 1,320 sq. ft.

&

#### Then

The *Initial Efficiency* for harvesting wind energy before conversion losses = 1,320/25,500 = 5%

#### WindWing Area vs. Turbine Blade Area Energy Extraction Area Comparison



180ft

# Projected Harvesting Capability Of Equivalent WindWing Size

<u>If</u> the wings are 180 feet by 20 feet with the angle of attack at 20° degrees, the exposed wing area is ~3,600 sq. ft. /wing

• With six wings the combined area is  $\sim 21,600$  sq. ft.

#### &

With a rectangular swept area of  $(180^{\text{ft}} \ge 180^{\text{ft}}) = 32,400^{\text{sq.ft.}}$ Then

The <u>potential</u> for harvesting wind energy before conversion losses =  $\sim 21,600/32,400 = \sim 65\%$ 

# Multiple WindWing System

Patented



#### **Increased Area of Contact**

More wind energy is harvested because there is more contact area exposed to the force of the wind. Depending on the Angle of Attack this could average 60% of a swept area as opposed to 5% or less for the propeller driven turbines

### New WindWing Installation



#### WindWing Retrofit in Wind Farm



#### THE TECHNOLOGY APPLIED TO FLOWING WATER

 In the more dense environment, such as a river or an aqueduct, the wing can be submerged and the force of flowing water is captured in the same manner as the WindWing harvests wind energy.

• The following slides present the concept:



#### A New Technology for Harvesting Water Energy



W2 Energy Development Corporation

Patent granted 12/15/2009

# Comparison of Lift on an Airfoil in Air and Water !

Joukowski Airfoil in Standard Earth Atmosphere Airspeed = 3 mph, Altitude = 5 ft, Surface Area = 7.75 sq ft, Pressure = 14.694lb/sq in, Temperature = 58F, <u>Density = 0.00237slug/cu ft</u> Angle of attack = 15.0 degrees, Camber = 0.0 % chord, Thickness = 12.5 % chord, Lift = 0.44 lbs Wings Only Lift = 4.4 lbs With Mechanical Advantage

#### Joukowski Airfoil in Water

Water velocity = 3 mph, Depth = 5 ft, Surface Area = 7.75 sq ft, Pressure = 16.863lb/sq in, Temperature = 60F, <u>Density = 1.94slug/cu ft</u> Angle of attack = 15.0 degrees, Camber = 0.0 % chord, Thickness = 12.5 % chord, Lift = 359 lbs Wings Only

Lift = 3,590 lbs With Mechanical Advantage

# **Conceptual Aqueduct Installation**



# WaterWing in a River Diversion



#### Mechanical advantage

Patent Granted 12/15/2009









# Something Else to Consider: The Grid

Large output production facilities will always be needed to produce electricity for transfer to heavy demand points of use.

Distributed production by smaller producers satisfying their own needs by using a variety of means for doing so will provide for a reduction of the stress on the Grid.



#### WindWing in a MicroGrid System Proprietary Design for Producing Quality Electricity Off Grid (Equally Suited for Water Applications)



# Next Steps

- Capitalization of Projects
- Inaugurating Test and Evaluation Programs for a variety of applications off grid.
- Program for integrating WindWing technology into new and currently operating systems.
  Developing a Macro and Micro-Cluster technology

#### Putting it All to Work



Wind Harvesting Technology Elegant Simplicity in Design

Thank You For Your Interest

CONTACT: W2 Energy Development Corporation 402 E Gutierrez Santa Barbara, CA93101 Gene R. Kelley, Founder President/CEO 805 685 6535 Cell: 805 450 8767 gkelley49@gmail.com

David Buckalew Senior Vice President 805 685 6535 tdbmy@Gmail.com



a new technology for harvesting water energy

Comparative Considerations Between The WindWing Technology and Wind Turbines

#### **Applications Considerations**

| Technical Issues    | Propeller Turbines     | WindWing                              |
|---------------------|------------------------|---------------------------------------|
| Betz Limit          | Yes                    | No                                    |
| Maintenance         | High                   | Low                                   |
| Solar Options       | No                     | Yes                                   |
| Generator Placement | Nacelle on Pole        | On Ground Level                       |
| Safety Issues       | Significant            | Low                                   |
| Scalable Efficiency | No                     | Yes                                   |
| Site Adjustability  | No                     | Number of Wing<br>Stacks              |
| Force Multiplier    | Low                    | Mechanical Advantage                  |
| Off Grid Placement  | Limited &<br>Expensive | Yes, Micro & Macro<br>Cluster Designs |

### **Environmental Impact**

| Environmental       |                    |                    |
|---------------------|--------------------|--------------------|
| Issues              | Propeller Turbines | WindWing           |
| Avian Destruction   | Yes                | Unlikely to occur  |
| Noise Pollution     | Yes                | Negligible         |
| Footprint & Profile | Large & High       | Smaller & Lower    |
| Placement           | Wind Farms         | Distributed Points |
|                     |                    | of Applications    |
| Aesthetically       |                    |                    |
| Appealing           | No                 | Yes                |
|                     |                    |                    |

# Investment, Availability and Integration Considerations

| <b>Financial Issues</b> | <b>Propeller Turbines</b> | WindWing            |
|-------------------------|---------------------------|---------------------|
| Efficiency Gains        | 3-5%                      | 40-60%              |
| Manufacture             | Remote/ Specialized       | Local/Low Cost      |
| Ship, Install Costs     | Specialized/High          | Routine/Local Labor |
| Effective Start Speed   | 16 MPH                    | 6-8 MPH             |
| Delivery Time           | 2-3 years                 | 4-8 months          |
| Retrofit Capability     | No                        | Yes                 |
| Multi Stacking          | No                        | Yes                 |
|                         |                           |                     |

# WindWing Attributes

- Higher quality power output
- Improved consistency of power
- Scalable for application adaptability
- Benign environmental impact
- Standardized industrial components
- Low Manufacturing Costs

#### **Micro-and Macro-cluster Benefits**

- Distributed generation reduces Grid demand
- Matches application & use requirements
- Grid capacity limits not affected
- Decentralization allows for increased energy production at more locations closer to users
- Provides emergency back up power for the grid
- Provides for remote electricity requirements not economically available from the grid

#### **Future Benefits**

- Available work force is expected to diminish by 30% in next 10 to 15 years – However, WindWing technology will grow local work force demand
- Because of simplicity and efficiency in design, fewer highly skilled personnel will be required
- Personnel requirements will be for fewer technicians decentralized in smaller work groups